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Heterogeneity in the parameters governing the spread of infectious diseases is a common feature of real-

world epidemics. It has been suggested that for pathogens with basic reproductive number R0O1,

increasing heterogeneity makes extinction of disease more likely during the early rounds of transmission.

The basic reproductive number R0 of the introduced pathogen may, however, be less than 1 after the

introduction, and evolutionary changes are then required for R0 to increase to above 1 and the pathogen to

emerge. In this paper, we consider how host heterogeneity influences the emergence of both non-evolving

pathogens and those that must undergo adaptive changes to spread in the host population. In contrast to

previous results, we find that heterogeneity does not always make extinction more likely and that if

adaptation is required for emergence, the effect of host heterogeneity is relatively small. We discuss the

application of these ideas to vaccination strategies.
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1. INTRODUCTION

During the recent outbreak of SARS, we heard a great deal

about so-called superspreaders, defined as infected

individuals who passed on the infectious agent to many

more people than average (Shen et al. 2004). The

phenomenon of superspreading can be viewed as an

extreme case of variation or heterogeneity in key

epidemiological parameters. An analysis of epidemic

data has indicated that the presence of such heterogene-

ities is a robust feature of many infectious diseases

(Hethcote & Yorke 1984; May & Anderson 1987; Grenfell

et al. 1995; Woolhouse 1997; Galvani & May 2005;

Lloyd-Smith et al. 2005).

The emergence of a disease combines two elements: the

introduction of the pathogen in a new host population and

its subsequent spread and maintenance within the

population. Mathematical models have been used to

show that, given a successful introduction, an epidemic

spreads more rapidly if there are heterogeneities in contact

between individuals than in a homogeneous host popu-

lation with the mean contact rate (the so-called ‘mean-

field’ model; Hethcote & Van Ark 1987; Hasibeder & Dye

1988; May & Anderson 1988; Gupta et al. 1989;

Diekmann et al. 1990; Marschner 1992; Dobson &

Foufopoulos 2001). This phenomenon is the result of a

synergy in susceptibility and infectivity in these models: by

having higher susceptibilities as well as higher infectivities,

some individuals contribute disproportionately to the

spread of disease. The characterization of the sources of

such heterogeneity is important for the design of targeted
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treatment strategies (Becker & Hall 1996; Murphy et al.

2003). Heterogeneities in epidemiological parameters also

affect the probability that a pathogen can establish itself in

a new population. Generally, for a given basic reproduc-

tive number, increasing heterogeneity leads to a decrease

in the probability of emergence (Galvani & May 2005;

Lloyd-Smith et al. 2005; Xiao et al. 2006). The intuitive

reason for this effect is an increase in extinctions of the

pathogen owing to stochastic effects in the early stages of

the epidemic.

Pathogen adaptation to its new host population may

also play a role in emergence. Theoretical studies of

species invasion (Gomulkiewicz & Holt 1995) and disease

emergence (Antia et al. 2003) have shown that adaptation,

if sufficiently fast, can rescue the pathogen population

from extinction. Thus, adaptability may facilitate emer-

gence, which is indirectly supported by findings that

protozoa and viruses emerge more frequently than

helminths (Taylor et al. 2001).

In this paper, we systematically investigate the impact

of heterogeneity on the emergence of a pathogen. The

mathematical model we develop enables us to consider

heterogeneity in susceptibility, infectivity and mixing

patterns. Unlike earlier studies on this topic, we also

include pathogens that cannot transmit efficiently and

need to adapt to their new hosts to establish themselves,

i.e. pathogens that have basic reproductive number R0!1

when they are introduced into the new host population.

Finally, we will investigate the effect of different vac-

cination strategies on the probability of disease emergence

in heterogeneous host populations.
2. MATERIAL AND METHODS
(a) Disease spread as a branching process

We model disease spread in a heterogeneous host

population as a multi-type branching process in discrete

time (Harris 1963; Metz 1978; Ball 1983). In our
This journal is q 2006 The Royal Society
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Figure 1. Implementation of heterogeneity in our model. We
partition the host population into subsets with uniform
infectivities and susceptibilities. The number of secondary
cases, R

ðijÞ
0 , an infected individual in subpopulation i causes in

an entirely susceptible subpopulation j is the product of the
infectivity of an individual of type i, hi, themixingmatrix of the
two subsets, pij, and the susceptibility, sj, and frequency, fj, of
the individuals of type j (see equation (2.2)). The dominant
eigenvalue of R

ðijÞ
0 is the basic reproductive number of the

pathogen, R0.

3076 A. Yates and others Pathogen evolution and host heterogeneity
framework, the population is subdivided into homo-

geneous subgroups with different epidemiological charac-

teristics (figure 1). In this section, we describe how we

represent transmission of a pathogen in a heterogeneous

population as a branching process, and how this frame-

work can then be used to determine the probability that an

epidemic occurs given the introduction of a single infected

individual, i.e. the probability of emergence.

We consider heterogeneity in the following host

properties:

(i) susceptibility to infection,

(ii) infectiousness or infectivity, and

(iii) the mixing preferences of the different host types

for each other.

We assume these properties to be independent, but

correlations can be imposed if appropriate for any

particular disease. For instance, infectiousness and

susceptibility may be related through factors specific to

the individual (e.g. someone with an STD may be both

more likely to contract HIV per encounter and sub-

sequently more likely infect later partners). In other

situations, apparent correlations in infectivity and suscep-

tibility may be explained by mixing patterns (e.g.

differences in the incidence of disease among children

attending day care and those who do not), rather than any

host-specific factors. The following framework allows us

to disentangle the contributions of these processes to

disease spread.

Infection events take place between a donor and

recipient, and in our model, the probability of an infection

event occurring in a given encounter is proportional to the

infectivity of the donor and the susceptibility of the

recipient. This assumption is known as proportionate

mixing (Hethcote & Van Ark 1987). Host types may also

mix with different preferences for one another, and so the

number of potentially infective encounters between two

types per round of transmission is determined by the

frequency of each in the population and the mixing

preference of the donor for the recipient (figure 1).
(b) Defining the basic reproductive number for

heterogeneous populations

These host properties determine the transmission

dynamics of a disease. Consider a population with n host
Proc. R. Soc. B (2006)
types. Let fZ{ f1, f2,., fn} be the set of frequencies of

each host type in the population
�P

fiZ1
�
, RðiÞ

0 be the

mean number of secondary cases caused by one infected

type i host and R
ðijÞ
0 be the mean number of transmission

events to recipient type j caused by one infected donor host

of type i, such that

RðiÞ
0 Z

X
j

R
ðijÞ
0 : ð2:1Þ

We assume that RðijÞ
0 is proportional to the product of

the following factors:

(i) A normalization factor N proportional to the basic

reproductive number R0 of the population as a

whole. We describe how this is calculated below.

(ii) The relative infectivity hi of type i hosts. The

quantities hi could be interpreted as the relative

efficacies of infected hosts of each type in

generating secondary cases, with all other factors

held constant. For example, in a pathogen spread

by coughing, h for a particular host type might be a

measure of the virion load in each cough or the

frequency of coughing. The sum of the hi does not

have to be one, as it cancels out in the calculation of

the normalization factor N.

(iii) The contact matrix pij describing the relative

preferences that type i hosts have for contact with

type j hosts. More precisely, we define the quantity

pij fj to be proportional to the number of contacts

that may lead to transmission events to a host of

type j during the infectious period of a single host of

type i. The overall normalization of p is arbitrary

and is absorbed into the constant N, and p need

not be symmetric.

(iv) The relative susceptibility sj of type j hosts. The

quantities sj are proportional to the probabilities of

each susceptible host type being infected in an

encounter with a given infected host. This could

reflect genetic predisposition, physiological factors

(e.g. age or degree of immunosuppression) or

behavioural traits. The sum of sj is again arbitrary.

(v) The population frequency fj of type j hosts.

In summary,

R
ðijÞ
0 hNhipijsj fj hNbij fj ; ð2:2Þ

where bijZhipijsj is the analogue of the contact matrix in

deterministic epidemiological models. We note some

degeneracy in this parameterization (see electronic

supplementary material), but it allows us to discuss how

the conceptually distinct factors interact to determine the

probability of disease emergence. As described earlier, we

do not assume any correlation between susceptibility,

infectivity and mixing, although this can be imposed, if

appropriate.1 The matrix R
ðijÞ
0 completely defines the

branching process and thus the dynamics of disease

spread after the introduction event.

The basic reproductive number, R0, is defined as the

mean number of secondary infections resulting from a

‘typical’ infected individual. Epidemiological theory tells

us that this tends to the largest eigenvalue of the matrix

RðijÞ
0 (see, for example, Diekmann et al. (1990), Becker &

Hall (1996) and Hyman & Li (2000)). Here we briefly

describe why this is so. In a heterogeneous population, the
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notion of a typical infection must involve the frequency of

each infected host type in the population during the

outbreak, rather than the frequencies f of each susceptible

host type. Let gi be the proportion of the infected

individuals that are of type i (iZ1 . n). Since the

susceptible hosts are unlimited in our model, the expected

values of the proportions giwill be asymptotically invariant

(i.e. they will approach constant values after transient

behaviour depending on the proportions of each spreader

type that are initially infected). Then, we define R0 of the

whole population at any time as

R0 Z
X
i

giR
ðiÞ
0 : ð2:3Þ

To calculate gi, we note that the branching process takes

place in discrete time and consider one round of infection.

The invariance of the proportions of infected host types gi
implies that asymptotically, the mean number of new cases

in type j hosts resulting from a single randomly chosen

infected host will beX
i

giR
ðijÞ
0 hgjR0; ð2:4Þ

or

g$R0 ZR0g: ð2:5Þ

Thus, formally R0 is the largest eigenvalue of the matrix

R
ðijÞ
0 and has eigenvector g. This is the rate of growth or

decay that the epidemic approaches after an initial

transient.

This defines the normalization factor N in equation

(2.2). We set the overall R0 for the population and

choose the factor N to scale the matrix R0 so that

equation (2.5) is satisfied. This definition of R0 ensures

that emergence is not possible for a pathogen in any

population with R0!1.
(c) Calculating the probability of emergence

We model the spread of a pathogen in a population as a

multi-type branching process in discrete time. We assume

a constant infectious period for each case, and during this

period, the number of secondary cases in type j hosts

originating from one infected type i host is a Poisson-

distributed random variable with mean RðijÞ
0 . This can be

expressed with the probability-generating function (PGF)

Fi(s), which specifies the distribution of secondary cases

generated by a case of type i in each of the n host types, and

its argument sZ{s1, s2, . sn} is an n-dimensional vector

of dummy variables. Specifically, Fi(0) is the extinction

probability after one generation, given a starting condition

of one infected host of type i. Using standard multi-type

branching process theory (see, for example, Harris

(1963)), from the assumption of Poisson-distributed

secondary cases between hosts of each type, it follows that

FiðsÞZ exp
X
j

RðijÞ
0 ðsjK1Þ

 !
: ð2:6Þ

The extinction probability after m generations starting

with one infected host of type i is F ðmÞ
i ð0Þ, where

the superscript denotes the mth iterate of the PGF.

The ultimate extinction probability, Pi, the limit F ðmÞ
i ð0Þ

as m/N, is the solution to

FiðsÞZ si ; ð2:7Þ
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as F is a strictly increasing function of its arguments. This

can be seen graphically for a simple model with one host

type (nZ1), and it is extended easily to arbitrary n. We

then calculate the probability of emergence in the

population as

PðemergenceÞZ 1KPðextinctionÞZ1K

P
i fisiPiP
i fisi

;

ð2:8Þ

where we assume that the probability of the first infection

event (i.e. the introduction of the disease into the host

population) occurring in the host type i is proportional to

both that type’s susceptibility and its frequency in the

population.

In this paper, we compare the probability of emergence

in a heterogeneous population with the reference case of

the probability of emergence in a homogeneous popu-

lation with the same R0. In our framework, disease spread

in a homogeneous population can be described with a

simple single-component probability-generating function

FðsÞZexpðR0ðsK1ÞÞ, and the probability of emergence is

then2

PðemergencejhomogeneityÞZ 1Ks�; ð2:9Þ

where s� is the solution to sZexpðR0ðsK1ÞÞ.

(d) Incorporating pathogen evolution

This framework is easily extended to allow us to

consider multiple pathogen strains and pathogen

evolution. Assume that the pathogen can mutate

sequentially and irreversibly through strains 1 . u,

each with distinct population average R0. In each

transmission event, there is a probability m of an

adaptation occurring and the newly infected host

acquiring this new strain. The PGFs are now indexed

by both the host type and the pathogen strain:

FiaðsÞZ exp ð1KmÞ
X
k

Rðia;kÞ
0 ðsk;aK1Þ

 

Cm
X
k

Rðia;kÞ
0 ðsk;aC1K1Þ

!
;

FiuðsÞZ exp
X
k

Rðiu;kÞ
0 ðsk;uK1Þ

 !
; ð2:10Þ

where Fia is the PGF for the spreading of type i hosts

infected with strain type a(Z1 . uK1) and R
ia;jð Þ
0 is

the mean number of secondary cases caused in hosts of

type j by a host of type i infected with strain a.

Secondary cases are still Poisson distributed within each

host type, but now there is a probability m per

transmission event of an adaptation into the strain

aC1. As earlier, we can use these PGFs to calculate

the probability of disease emergence, given a single

introduction of a host of a given type infected with a

given strain.
3. RESULTS
First, we deal with the spread of a single non-evolving

pathogen in a heterogeneous host population. Later, we

introduce the possibility of pathogen adaptation.

We emphasize that the results in this section relate to

calculating how, for a given value of R0, the probability of

emergence is influenced by the different forms of host
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heterogeneity. In other words, we are comparing the risk of

disease emergence in populations with different levels of

heterogeneity, but the same average R0.
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Figure 2. The influence of host heterogeneity on the
probability of emergence of a non-evolving pathogen. Grey
line, the homogeneous case (equation (2.9)). (a) Each
form of heterogeneity individually. Solid black line, a
population comprising 10% superspreaders with 20-fold
higher infectivity than normal; dotted line, dissortative
mixing (qZ0.05; see equation (3.1)) in a population split
of 10–90%; and the dashed line, assortative mixing
(qZ0.95). Multiple subpopulations with different suscep-
tibilities give rise to the same probability of emergence as
the homogeneous case with the same R0 (grey line). (b)
Combining heterogeneity in infectivity (solid black line)
with heterogeneous mixing patterns. (c) Combining
heterogeneity in susceptibility (grey line, which coincides
with the homogeneous case) with heterogeneous
mixing patterns.
(a) Emergence of non-evolving pathogens

In figure 2, we illustrate how the three forms of

heterogeneity (susceptibility, infectivity and mixing) affect

the probability of emergence of a single pathogen strain. In

each panel, the grey line shows the reference case of the

probability of emergence of disease in a homogeneous

population, as calculated in equation (2.9).

We illustrate the influence of host heterogeneity with

simple examples. We divide the population into two host

types with frequencies of 10 and 90%. For the case of

heterogeneity in infectivity, members of the smaller

population are 20 times more infectious than the

majority (superspreading). For heterogeneous suscep-

tibility, the smaller population is 100 times more

susceptible to contracting the disease per contact with

an infected individual. Heterogeneity in contact is

represented by the following: assortative mixing, where

each type has a preference for contacts with hosts of the

same type; and dissortative mixing, in which hosts prefer

contact with hosts of the other type. These contact

patterns can be represented with a simple one-parameter

mixing matrix,

pZ
q 1Kq

1Kq q

 !
; ð3:1Þ

so that qZ0.5 corresponds to equal mixing of the two

types, qO0.5 assortative and q!0.5 dissortative mixing.

Figure 2a shows how the probability of emergence is

influenced by each of these forms of heterogeneity alone,

as a function of R0 of the whole population. We note that a

homogeneous population and a population with hetero-

geneous susceptibility but the same R0 have identical

probabilities of emergence. This follows from equations

(2.6) and (2.7), since Fi(s) does not depend on i in the

case of heterogeneous susceptibility alone. We also note

that variation in the contact preferences of otherwise

identical hosts influences disease emergence.

In figure 2b,c, we illustrate how these forms of

heterogeneity can interact. We find that the addition of

multiple forms of heterogeneity results in complex

outcomes. Our results confirm that a non-evolving

pathogen with R0!1 is guaranteed to go extinct and

suggest that:

(i) Host heterogeneity does not increase the prob-

ability of disease emergence, and in many, but not

all, cases it decreases it. Our results are consistent

with those of Lloyd-Smith et al. (2005), who

considered the case of heterogeneity in infectivity

alone.

(ii) The influence of heterogeneity depends on the

nature of the host variation. For example, we show

that variation in either susceptibility or infectivity

alone gives very different outcomes. The former

does not affect emergence, and the latter reduces

its risk. We find that the addition of multiple forms

of heterogeneity generates complex results—for

example, while variation in susceptibility alone

gives the same effect as a homogeneous population
Proc. R. Soc. B (2006)
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with the same R0, when combined with hetero-

geneity in mixing, it reduces the risk of emergence

compared to the homogeneous case.
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Figure 3. The probability of one-step pathogen evolution
and emergence occurring in the presence of host
heterogeneity. The adaptation probability m per trans-
mission is 0.01. (a) The effect of the different forms of
heterogeneity alone. Note that heterogeneity in suscep-
tibility alone gives identical probability of emergence to the
homogeneous case (grey line). Heterogeneous infectivity
was modelled with 10% of the population as super-
spreaders with 20-fold higher infectivity than normal;
susceptibility with 10% of the population 20 times more
likely to contract the infection per contact; and assortative
and dissortative mixing modelled with the parameter
qZ0.95 and 0.05, respectively. (b) Combining hetero-
geneity in infectivity and in mixing. (c) Combining
heterogeneity in susceptibility and mixing.
(b) Emergence of evolving pathogens

We now turn to the case where the emergence of a

pathogen requires adaptation to its new host. Here, the

introduced pathogen has R0!1 and it will go extinct

unless it evolves during the chains of transmission to have

R0O1. Previous studies have shown how, in the absence of

heterogeneity in epidemiological parameters, the prob-

ability of emergence depends on: (i) the rate of adaptation,

(ii) the number of adaptation events needed to generate a

strain with R0O1 and (iii) the fitness (as measured by R0)

of the intermediate strains (Antia et al. 2003). Since

heterogeneity in infectivity, susceptibility and contact will

influence the distribution of lengths of the chains of

transmission, they are likely to impact the probability of

emergence. In this section, we explore how host

heterogeneity and pathogen evolution interact.

As mentioned in §1, the emergence of the evolving

pathogen can be considered as a two-step process. The

first step is evolution, i.e. the generation of the adapted

pathogen (which is defined as the one having an R0O1).

The second step, i.e. the emergence of this adapted

pathogen, has been considered in §2. Consequently, we

focus on how heterogeneity affects the probability of

evolution by setting R0 of the evolved pathogen to much

greater than 1 (we use a value of 10 000 in the simulations

we present here).

In figure 3 we examine the case where a single

adaptation event is sufficient to bring R0 from below to

well above 1. Figure 3a illustrates that as for non-evolving

pathogens, heterogeneity in either infectivity or contact

decreases the probability of emergence with respect to a

homogeneous population with the same R0, and hetero-

geneity in susceptibility alone has no effect. Note that the

effect of heterogeneity declines at low values of R0 of the

introduced pathogen. We see that even relatively large

degrees of host heterogeneity have only a modest influence

on emergence, when evolution is necessary for emergence

(i.e. when R0!1).

Figure 3b,c illustrates the effect of combining different

forms of heterogeneity. We obtain the surprising result

that a host population with a small proportion of

superspreaders with high infectivity but who mix dis-

sortatively (i.e. superspreaders have a preference for

mixing with ‘normal’ spreaders, and vice versa), has a

higher probability of emergence than in the homogeneous

case. While the magnitude of this effect is small, it is

surprising in the light of the observation of Lloyd-Smith

et al. (2005) and the results in §2, which showed that

pathogen emergence is always less likely in heterogeneous

host populations.

For completeness, we also consider the effects of

changing the adaptation rate or the number of adaptation

events needed for emergence in the presence of super-

spreaders with different mixing patterns (figure 4). Here,

we see that the probability of emergence is much more

sensitive to changes in R0 or the properties of the pathogen

(such as changes in the rate of adaptation or the number of

adaptation events required) than to heterogeneity in the

host population.
Proc. R. Soc. B (2006)
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Figure 4. Emergence of pathogens with different evolutionary characteristics in heterogeneous host populations. (a) One-step
evolution (nZ1) for different values of m, the probability of adaptation per transmission. (b) Varying the number of adaptation
events, n, required to reach the adapted strain with R0[1. Intermediate strains have the same R0 as the original (introduced)
strain. The probability of adaptation per transmission is fixed at mZ0.01. Grey line, the reference case of a homogeneous
population. Solid black line, heterogeneity in infectivity (10% superspreaders with 20-fold higher infectivity than normal).
Dashed line, heterogeneity in infectivity with assortative mixing (qZ0.95) of the two spreader types. Dotted line, heterogeneity
in infectivity with dissortative mixing (qZ0.05).
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If the evolved pathogen strain has R0 only slightly

greater than 1, the probability of emergence is approxi-

mately equal to the ‘probability of evolution’ calculated

earlier multiplied by the probability of emergence of the

evolved strain, which we calculated in §2.

In summary, we see two regimes; evolution is

considerably more important than host heterogeneity for

determining the risk of emergence at low R0. However,

heterogeneity becomes an important influence on emer-

gence, when R0O1.
4. CONSEQUENCES OF TARGETED VACCINATION
Is it always beneficial to target superspreaders for

vaccination? The framework we use in this paper can be

used to predict the levels of protection that different

vaccine targeting strategies provide against disease emer-

gence. Here, we compare two classes of treatment—

a ‘leaky’ vaccine that reduces susceptibility by x% in all

recipients and an ‘all-or-none’ vaccine that provides 100%

protection to x% of recipients and no protection to the

remainder. Our analysis shows that these two vaccines give

an identical reduction in the probability of emergence in a

homogeneous population (figure 5a).

Given the constraint of an available level of coverage

(the proportion of the population that can be vaccinated),

we compare two strategies in a population with hetero-

geneity in infectiousness: random vaccination and tar-

geted vaccination of previously identified or anticipated

‘superspreaders’, with the random assignment of vaccine

resources to the remaining population (figure 5b,d ).

Figure 5 illustrates the effect of vaccination strategies on

the probability of emergence, and the effect on R0 itself for

different levels of coverage is shown in figure 6.

Three simple observations can be made here. First,

irrespective of heterogeneity, vaccine coverage or the

targeting strategy, leaky and all-or-none vaccines provide

identical levels of protection. Second, perhaps more

obvious, targeted vaccination provides a bigger reduction

in the probability of emergence than random treatment.

Third, however, targeting is only of substantially increased
Proc. R. Soc. B (2006)
benefit if vaccine resources are limited, and otherwise the

effort of identifying and vaccinating potential super-

spreaders may be unnecessary.
5. DISCUSSION
In this paper, we propose a simple framework for

characterizing variation in host epidemiological par-

ameters and describing disease transmission among

these hosts with stochastic (multi-type branching process)

models. We show that with some exceptions, variation in

infectiousness, susceptibility to infection and contact

patterns makes the extinction of chains of disease

transmission more likely, i.e. epidemics are less likely to

occur in epidemiologically diverse populations than in

homogeneous ones (with the same basic reproductive

number R0).

We also find that the degree of reduction in risk is

sensitive to the nature of the host variability. If adaptation

of the pathogen is required, then under some circum-

stances, the risk of emergence may even be increased by

heterogeneity. However, this is a small effect. Our main

result is that the rate of adaptation or evolution is

considerably more important for determining the risk of

emergence at low R0, and heterogeneity becomes a more

important influence on emergence, if R0O1.

Branching processes are appropriate for describing the

early stages of disease outbreak, when susceptible ones are

not limited and stochastic effects are most important

(Metz 1978; Ball 1983). This is precisely the time during

which extinctions may occur. Discrete time branching

process models have been used to estimate R0 from

epidemic data (Becker 1977; Farrington et al. 2003).

Multi-type branching processes have also been used to

predict the outcome of vaccination strategies in popu-

lations with different levels of mixing (Ball & Becker

2006). Lloyd-Smith et al. (2005) used single-type

branching processes to study the influence of hetero-

geneity on the emergence of non-evolving pathogens.

They take a phenomenological approach, using inference

with branching processes to assess the degree of
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Figure 5. Vaccination strategies in (a, c) homogeneous and (b, d) heterogeneous populations, without (a, b) and with (c, d)
pathogen adaptation. Grey lines, the probability of disease emergence as a function of R0 in the unvaccinated population. Solid
black lines, the effect of random vaccination programmes with different levels of coverage. Dotted black lines in (b, d), the effect
of targeted vaccination with the same overall coverage, i.e. vaccinating all the superspreaders and applying the remaining vaccine
resources randomly to the rest of the population. The heterogeneous population in (b, d) comprises 5% superspreaders with
10-fold higher infectivity than the remaining 95%. In (c, d) the pathogen requires a single adaptation step to gain a high value of
R0 (here 10 000). In this case, the probability of emergence becomes the probability of evolution (see main text). In (a-d) we
simulated both a ‘leaky’ vaccine, which reduces susceptibility in all recipients by 70%, and an ‘all-or-none’ vaccine that confers
complete immunity on 70% of recipients and none on the remainder. These vaccines give identical results.
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heterogeneity in real epidemics. They assume that

secondary cases from each infected individual are Poisson

distributed, but with a mean drawn from a distribution

(itself with mean R0) that represents host variation.

Superspreading individuals are then defined statistically

and belong to the tail of this distribution. We take a

complementary approach, explicitly describing the hetero-

geneity on three levels (susceptibility, infectivity and

mixing) and modelling transmission between homo-

geneous subpopulations as independent Poisson pro-

cesses. In our framework, continuous variation of

epidemiological parameters in a population can be

modelled with arbitrarily large numbers of compartments.

Thus, our approach is less empirical and also not suited to

inference using epidemiological datasets; however, it is

more systematic, in that it allows us to describe the

contributions of different forms of heterogeneity to disease

emergence, with and without pathogen evolution.

Our results have relevance to the ongoing concerns

regarding emerging infectious diseases. First, they empha-

size that the risk of emergence is strongly influenced by the

adaptability of pathogens. This can be assessed quan-

titatively by serial passage of the pathogen in the new host

(for example, avian flu in pigs). Second, for the design of

vaccination or treatment strategies, our results highlight
Proc. R. Soc. B (2006)
the importance of having good estimates of R0 and of

heterogeneity through identification of the key spreader

types. If one uses incomplete data to estimate R0, e.g. by

failing to identify a class of superspreading individuals, R0

may be significantly underestimated. If R0 is known and

superspreading groups identified, the most efficient use of

limited treatment resources can be made.

A priori identification and location of risk groups

may not always be feasible, of course. In the context of

STDs, methods exist for identifying potential super-

spreaders by their virtue of being ‘connected’ to the

contact network at all (Cohen et al. 2003), and of

course for other diseases highly infectious or susceptible

subpopulations might be predicted in advance (e.g.

children and the elderly). In any event, the results here

reinforce the notion that the primary purpose of

intervention must be to decrease R0. The ‘homogeniz-

ation’ that arises from vaccination or removing super-

spreaders, which may have been thought to increase the

risk of disease emergence, is always outweighed by the

associated reduction in R0.

All numerical computations were performed with R
(R Development Core Team 2006). This work was
supported by an NIH grant GM-U01GM70749 to
Rustom Antia.
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ENDNOTES
1Typically this correlation is implicit in deterministic models in which

the rate of new infections is represented a term of the form bIS, where

b is a single parameter expressing a combination of transmissibility

and susceptibility and I, S are the numbers of infectives and

susceptibles, respectively.
2In models in which individual infectious periods are exponentially

distributed random variables and infectious contacts are made at the

points of a Poisson process, then if R0O1 the probability of

emergence increases with R0 as 1K1/R0 (May et al. 2001). In

contrast, the model we describe here assumes non-random infectious

periods, and no closed-form expression exists for the probability of

emergence.
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